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Abstract
The E8 lattice is constructed in terms of icosians by matching two sets of F4

lattices described by quaternions. Embedding the noncrystallographic group
H4 into the Weyl group W(E8) has been described using matrix generators with
an emphasis on the relevant Coxeter elements. The conjugacy classes of H4 in
terms of quaternions and the characters of the two four-dimensional irreducible
representations are explicitly calculated.

PACS numbers: 05.50.+q, 02.20.-a

1. Introduction

Noncrystallographic icosahedral structures in three-dimensional space can be understood by
embedding the point symmetry group 2 × A5 ≈ H3 into the crystallographic point group
W(D6) [1]. The noncrystallographic Coxeter group H3 can be generated by three reflections
leading to a root system described by 30 pure unit quaternions [2]. A profound mathematical
structure normally arises in the description of the noncrystallographic Coxeter group H4 in
the four-dimensional space where the root system of H4 is represented by 120 unit icosians,
quaternionic elements of the binary icosahedral group 2A5 [3]. A powerful method has been
invented by Wilson [4] where the set of unit icosians and their σ multiples (σ = (1−√5)/2)
constitute the root system of E8 [5]. In an earlier paper [6] one of us (MK) indicated that
the E8 root system described by icosians can also be obtained by matching two sets of F4

roots represented by quaternions. Further properties of embedding H4 in W(E8) have been
described in a number of papers [7].

Recent developments in superstring theories, particularly in the heterotic E8 × E8

superstring theory [8] motivate further studies of the E8 lattice and its symmetries. In section 2
we give a brief summary of what has been achieved for H4 and E8 lattices in relation to icosians.
In section 3 we discuss the matrix representations of the Weyl group W(E8) generators on
the icosian basis. The generators of H4 as a subgroup of W(E8) are transformed into the
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block-diagonal forms where two four-dimensional irreducible representations of H4 become
manifest. Section 4 deals with the Coxeter element of W(E8) and its relevance to the Coxeter
element of H4 where its characteristic polynomial can be factored into two polynomials, one
of which is the characteristic polynomial of H4. We discuss H4 as the largest finite subgroup
of O(4) [9] in section 5. Class structures of H4 and the determination of the number of
elements in each conjugacy class have been worked out in section 6 where characters of the
representations of concern are also tabulated. Finally, in the conclusion we remark on the
method we employed and on its possible use in physics. In the appendix we list the generators
of W(E8) in the basis of quaternion units and their multiples by σ .

2. Quaternionic root systems, magic square and icosians

A quaternion q =∑3
a=0 qaea with qa real numbers and ea(e0 = 1, e1, e2, e3) quaternion units

is a vector in four-dimensional Euclidean space where pure quaternions satisfy the relations

eiej = −δij + εijkek

ei = −ei i, j, k = 1, 2, 3. (1)

Here δij and εijk are the usual Kronecker and Levi-Civita symbols respectively. The quaternions
of unit norm qq = qq = 1 with q = q0 −

∑3
i=1 qiei form a group isomorphic to SU(2).

The finite subgroups of quaternions, also known as the binary polyhedral groups [10] are
the cyclic groups 〈n, n, 1〉 of order 2n, the dicyclic groups 〈n, 2, 2〉 of order 4n, the binary
tetrahedral group 〈3, 3, 2〉 of order 24, the binary octahedral group 〈4, 3, 2〉 of order 48 and
the binary icosahedral group 〈5, 3, 2〉 of order 120. The quaternionic elements of the binary
icosahedral group are called icosions. In the four-dimensional space the root systems of the
crystallographic groups W(D4) and W(F4) and noncrystallographic Coxeter group H4 can be
described by quaternions. Under the quaternion scalar product

(q1, q2)Q = 1
2 (q1q2 + q2q1) (2)

the following set of quaternions describe a scaled root system of F4 [6]:

A0 A1 A2 A2

±1,±e1,±e2,±e3
1
2 (±1± e1)

1
2 (±1± e2)

1
2 (±1± e3)

1
2 (±1± e1 ± e2 ± e3)

1
2 (±e2 ± e3)

1
2 (±e3 ± e1)

1
2 (±e1 ± e2).

A pairing of the two sets of quaternionic F4 roots in the following form:

(0, A0), (A0, 0), (A1, A3), (A3, A2), (A2, A1) (3)

where (Ai, Aj ) = Ai + σAj (σ = (1 −√5)/2, τ = (1 +
√

5)/2) constitute the quaternionic
roots of E8 provided one introduces the Euclidean scalar product

(q1, q2)Q ⇒ (q1, q2)E (4)

where σ and τ are replaced respectively by σ → 0 and τ → 1 in the quaternion scalar
product (2) [4]. Indeed half of the roots in (3) are the icosians q which constitute the root
system of H4 under the quaternion scalar product. The remaining half is of the form σq.
Any pair of unit icosians q1, q2 satisfy the quaternion scalar product (q1, q2)Q = a where
a = 0,± 1

2 ,± τ
2 ,± σ

2 . Now under the Euclidean scalar product the same pair of quaternions
satisfy (q1, q2)E = b where b = 0,± 1

2 ,± 1
2 , 0 respectively. Similarly, Euclidean scalar

products of the forms (q1, σq2)E = (σq1, q2)E, (σq1, σq2)E can take the values 0,± 1
2 . The

icosians constituting the root system of H4 are classified in table 1 according to the conjugacy
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Table 1. Icosians with respect to their conjugacy classes.

Elements in the conjugacy classes denoted by their
Conjugacy classes numbers (cyclic permutations in e1, e2, e3 should be added
and orders of elements to get the right number of elements in each class)

1 1
2 −1

10 12+ : 1
2 (τ ± e1 ± σe3),

5 12− : 1
2 (−τ ± e1 ± σe3),

10 12′+ : 1
2 (σ ± e1 ± τe2),

5 12′− : 1
2 (−σ ± e1 ± τe2),

6 20+ : 1
2 (1± e1 ± e2 ± e3),

1
2 (1± τe1 ± σe2),

3 20− : 1
2 (−1± e1 ± e2 ± e3),

1
2 (−1± τe1 ± σe2),

4 30 : 15+ : e1, e2, e3,
1
2 (σe1 ± τe2 ± e3),

: 15− : −e1,−e2,−e3,
1
2 (−σe1 ± τe2 ± e3),

Table 2. The magic square of lattice matching.

SU(3) SP (3) F4

SU(3) SU(3)× SU(3) SU(6) E6

SP (3) SU(6) SO(12) E7

F4 E6 E7 E8

Figure 1. The Coxeter diagram of H4.

classes of the binary icosahedral group 2A5. The numbers in front of the sets denote the
numbers of elements in each conjugacy class; +(−1) signs indicate the sign of the first entity.
Note that 30 pure quaternions are in the same conjugacy class of 2A5 and can be taken as the
roots of the Coxeter graph H3. The lattice matching (3) of the form (F4, F4) is a special case
of the magic square [11] given in table 2.

Let us denote by α1 = −e1, α2 = (τe1 +e2 +σe3)/2, α3 = −e2 and α4 = (σ +e2 +τe3)/2,
the simple roots ofH4. The Coxeter graph ofH4 is illustrated in figure 1 whereβi(i = 1, 2, 3, 4)
are the reflection generators of H4. Then the Coxeter–Dynkin diagram of E8 can be taken as
shown in figure 2. By letting

l1 − l2 = −σα4 l2 − l3 = −σα3 l3 − l4 = −σα2 l4 − l5 = α1

l5 − l6 = α2 l6 − l7 = α3 l7 − l0 = α4 l6 + l7 = −σα1
(5)

where l0 = (l1 + · · · + l8)/2 one can relate the simple roots of our choice to the set of
orthogonal vectors li(i = 1, . . . , 8) normalized by 1/

√
2. The generators βi of H4 are given

by βi = rir
′
i = r ′i ri (no summation over i) [12].

Now we prove that the successive applications of ri and r ′i , each of which requiring a
Euclidean scalar product, leads to the quaternion scalar product for βi . Let us note that the
quaternion scalar product of icosians can be written in the form (q1, q2)Q = a + bσ where a

and b are rational numbers, however (q1, q2)E = a. Consider now the actions of ri and r ′i on
an arbitrary quaternion:

ri : q → q ′ = q − 2(αi, q)Eαi = q − 2aαi (6)
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Figure 2. The Coxeter–Dynkin diagram of E8.

where (αi, q)E = a when (αi, q)Q = a + bσ .
Next, we apply r ′i on q ′

r ′i : q ′ → q ′′ = q ′ − 2(α′i , q
′)Eα′i = q − 2aαi − 2(α′i , q

′)Eα′i . (7)

Since α′i = −σαi we obtain (α′i , q
′)E = −b and

βi = rir
′
i : q → q ′′ = q − 2(a + bσ)αi

q → q − 2(αi, q)Qαi = −αiqαi.
(8)

This also shows that σq also transforms under βi in the same manner as q:

βi : σq →−αiσqαi. (9)

The results in (8)–(9) prove that the roots of E8 split under H4 into two disjoint sets, icosians
q and σq, which implies that the H4 generators can be put into block-diagonal forms.

3. Matrix representations of the generators of H4

One can choose ea(a = 0, 1, 2, 3) as the orthogonal basis for icosians of the H4 root system.
The σ multiples of these units σea extend the space to eight-dimensional Euclidean space when
the Euclidean scalar product is invoked. In the appendix we list the matrix representations
of the E8 generators ri and r ′i (i = 1, 2, 3, 4) in the ea, σea basis. Since we are interested
only in its subgroup H4 below we give the eight-dimensional reducible representation of the
generators βi in the basis ea, σea:

β1=




1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

0

0

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1




β2= 1
2




2 0 0 0 0 0 0 0
0 0 −1 1 0 1 1 0
0 −1 1 0 0 1 0 −1
0 1 0 1 0 0 −1 −1
0 0 0 0 2 0 0 0
0 1 1 0 0 1 0 1
0 1 0 −1 0 0 1 −1
0 0 −1 −1 0 1 −1 0




β3=




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

0

0

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1




β4= 1
2




1 0 0 1 −1 0 −1 0
0 2 0 0 0 0 0 0
0 0 1 −1 −1 0 0 1
1 0 −1 0 0 0 1 1
−1 0 −1 0 0 0 −1 1
0 0 0 0 0 2 0 0
−1 0 0 1 −1 0 1 0
0 0 1 1 1 0 0 1




.

(10)
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These matrices can be transformed into block diagonal form by an orthogonal similarity
transformation

β ′i = AβiA
T (11)

where A = AT = A−1 and is given by

A =
[

xI yI

yI −xI

]

= x

[
I τI

τI −I

]
. (12)

Here I is a 4×4 unit matrix, x = √(2 + σ)/5 = 0.5257 . . . and y = √(2 + τ)/5 = 0.8506 . . .

with some properties y = τx, x = −σy, x2 + y2 = 1, y2 + 2xy = τ, x2 − 2xy = σ .
The 8× 8 reducible generators of H4 are now in block diagonal form:

β ′1 = β1

β ′3 = β3

β ′2 = 1
2




2 0 0 0
0 τ −σ 1
0 −σ 1 −τ

0 1 −τ σ

0

0

2 0 0 0
0 σ −τ 1
0 −τ 1 −σ

0 1 −σ τ




β ′4 = 1
2




σ 0 −τ 1
0 2 0 0
−τ 0 1 −σ

1 0 −σ τ

0

0

τ 0 −σ 1
0 2 0 0
−σ 0 1 −τ

1 0 −τ σ




.

(13)

They act on the new basis η′a = xea + yσea and ηa = yea − xσea (a = 0, 1, 2, 3) which
can also be expressed in terms of the familiar vectors li(i = 1, 2, . . . , 8). The first four
unit vectors η′a are a basis for the upper block matrices and the ηa are the basis vectors for
the lower block matrices. It is obvious from the matrices in (13) that the eight-dimensional
defining representation of W(E8) branches as 8 = 4 ⊕ 4′ where 4 and 4′ are the irreducible
representations of H4, which has four four-dimensional irreducible representations. Our
notation for the irreducible representation of H4 is explained in section 6.
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4. Coxeter elements and Coxeter exponents

The matrix M ′ = β ′1β
′
2β
′
3β
′
4 can be taken as the Coxeter element of E8 which is already in

block diagonal form

M ′ = 1
2




σ 0 −τ 1
−1 −τ 0 σ

0 −σ −1 −τ

−τ 1 −σ 0

0

0

τ 0 −σ 1
−1 −σ 0 τ

0 −τ −1 −σ

−σ 1 −τ 0




. (14)

The characteristic equation of the Coxeter element M ′ can be written as∣∣M ′ − λI
∣∣ = λ8 + λ7 − λ5 − λ4 − λ3 + λ2 + 1 = p(λ)g(λ) = 0 (15)

where p(λ) = λ4 + τλ3 + τλ2 + τλ + 1 = 0 leads to the eigenvalues of the upper block matrix
and g(λ) = λ4 + σλ3 + σλ2 + σλ + 1 = 0 leads to the eigenvalues of the lower block matrix.
The solutions of p(λ) = 0 are the complex exponents of the form λ = exp(im(2π)/30) where
m takes half the Coxeter exponents of W(E8),m = 7, 13, 17, 23 and the solutions of g(λ) = 0
can be expressed as the same exponent where m takes the other half of the Coxeter exponents
of W(E8),m = 1, 11, 19, 29 [3, 10]. The last set of Coxeter exponents are also the Coxeter
exponents of H4 where the order of the group is 2 · 12 · 20 · 30 = 14 400. Clearly, the H4 is a
subgroup of W(E8) with an index 8 · 14 · 18 · 24 = 48 384, which upon multiplication by the
order of H4, 14 400, yields the order of W(E8), 192 · 10!.

The Coxeter element of the D6 ≈ SO(12) subgroup of E8 can be written as N ′ = β ′1β
′
2β
′
3

which is, in block diagonal form

N ′ = 1
2




2 0 0 0
0 −τ −σ −1
0 −σ −1 −τ

0 1 τ σ

0

0

2 0 0 0
0 −σ −τ −1
0 −τ −1 −σ

0 1 σ τ




(16)

thereby showing that η′0 and η0 are left invariant. This means N ′ can be taken as a 6 × 6
block-diagonal matrix acting on the space spanned by η′i and ηi(i = 1, 2, 3) which are linear
combinations of pure quaternions ei and the σei(i = 1, 2, 3). The characteristic equation of
N ′ can be written as∣∣N ′ − λI

∣∣ = λ6 + λ5 + λ + 1 = h(λ)k(λ) = 0 (17)

where
h(λ) = λ3 + τλ2 + τλ + 1 = 0

and
k(λ) = λ3 + σλ2 + σλ + 1 = 0.

The solutions of h(λ) = k(λ) = 0 are complex exponentials exp(im(2π)/10) where
m = 3, 5, 7 for h(λ) = 0 and m = 1, 5, 9 for k(λ) = 0. Therefore the lower matrix is the
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Coxeter element of the group H3 ≈ 2×A5 of order 2 ·6 ·10 = 120 with an index 9 ·6 ·8 = 192
in D6 the order of which is 25 ·6!. Further restriction to the product K ′ = β ′1β

′
2 would lead to a

block-diagonal 4×4 matrix which is the Coxeter element of the Weyl group of A4 ≈ SU(5) of
order 120. The lower 2× 2 matrix is the Coxeter element of the noncrystallographic Coxeter
group H2 of order 10.

By this reduction we have shown how the sequence of embedding A4 ⊂ D6 ⊂ E8 leads
to the embedding of the corresponding noncrystallographic Coxeter groups H2 ⊂ H3 ⊂ H4 in
their crystallographic groups.

One more remark would be informative before we end this section. Coxeter elements
and the incidence matrices C = A− 2I where A and I are the Cartan matrix and unit matrix
respectively have the same eigenvalues [10]. Therefore one could obtain the same information
from the incidence matrix of E8.

5. H4 as the largest finite subgroup of O(4)

The quaternion group is isomorphic to SU(2) which is in turn 2→ 1 homomorphic to SO(3).
A pair of unit quaternions (p, r) multiplying a quaternion q from the left and right

(p, r) : q → pqr (18)

leaves the quaternion norm qq = qq invariant. Therefore (p, r) is an element of O(4),
indeed an element of SO(4). The transformation in (18) has a geometrical interpretation. Any
quaternion p can be written

p = cos α + P sin α = exp(αP ) (19)

where P is a pure quaternion P 2 = −1,P = −P . One can prove that a general displacement

(p, r) : q → eαP qeβR R2 = −1 R = −R

is a double rotation through angles α + β about the plane generated by the vectors 0,
P −R, 1 + PR and α − β about the plane generated by the vectors 0,P + R, 1 − PR [3].
These two planes are obviously orthogonal to each other.

In addition to the transformation in (18) one can define a transformation

(p, r)∗ : q → pqr (20)

which also leaves qq = qq invariant. Since (20) leaves p + r invariant and changes the sign
of p − r for general unit quaternions p and r , it follows that (p, r)∗ is a rotary reflection.

The preceding arguments lead to the result that the transformation (p, r) can be represented
by matrices of determinant +1 while (p, r)∗ corresponds to the transformations of determinant
−1. Therefore the transformations (p, r) form a subgroup SO(4). Below we give some
properties of the elements of O(4):

(a, b)(c, d) = (ac, db)

(a, b)(a, b)−1 = (1, 1) = (−1,−1)⇒ (a, b)−1 = (a−1, b−1) = (ā, b̄)

(a, b)∗(c, d)∗ = (ad̄, c̄b)

(a, b)∗
−1
(a, b)∗ = (1, 1) = (−1,−1)⇒ (a, b)∗

−1 = (b, a)∗

(a, b)(c, d)∗ = (ac, db)∗

(a, b)∗(c, d) = (ad̄, c̄b)∗.

(21)

Clearly the centre of O(4) is represented by the elements (1, 1) = (−1,−1), (−1, 1) =
(1,−1) and (1, 1)∗ = (−1,−1)∗, (−1, 1)∗ = (1,−1)∗ which form the group Z2 × Z2. We
have the isomorphisms

O(4)

Z2 × Z2
≈ SO(4)

Z2
≈ SO(3)× SO(3) ≈ SU(2)

Z2
× SU(2)

Z2
. (22)
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All the finite subgroups of O(4) are classified by du Val [9]. The largest finite subgroup of
O(4) is, as expected, the noncrystallographic Coxeter group H4.

Without referring to the matrix representation, it is tempting to prove that the Coxeter
number h of the group H4 is 30. To find M = β1β2β3β4 we successively apply the βi to q

yielding

M : q → α1α2α3α4qα4α3α2α1 M = (α1α2α3α4, α4α3α2α1). (23)

Here αi(i = 1, 2, 3, 4) are the simple roots of H4 given in section 2. Then M reads

M = (p, r) = (
1
2 (σ + τe1 + e3),− 1

2 (1 + e1 − e2 + e3)
)

(24)

where p and r belong to the conjugacy classes 12+ and 20−. Let us find h when

Mh = (1, 1) = (−1,−1) = (ph, rh). (25)

We know from table 1 that p10 = 1, r3 = 1 so that their least common multiple is h = 30.

6. Determination of conjugacy classes of the H4 and characters of some representations

The character table of H4 has been determined by Grove [13]. Our approach to determine
the conjugacy classes is highly different and more explicit. We notice that the elements
(p, r) = (−p,−r) from a subgroup H ′4 of order 7200 which is a discrete subgroup of SO(4).
The remaining elements (p, r)∗ = (−p,−r)∗ are in the coset space3 H4/H

′
4. We will explicitly

show that the 7200 elements (p, r) of H ′4 partition into 25 conjugacy classes and the remaining
7200 elements (p, r)∗ form an additional nine conjugacy classes, thereby totalling 34 conjugacy
classes altogether.

Denote by (a, b) and (a, b)∗ arbitrary elements of H4. Using (21) it is straightforward to
show the following relations for conjugacy classes:

(a, b)(p, r)(a, b)−1 = (apā, brb̄)

(a, b)∗(p, r)(a, b)∗
−1 = (ar̄ā, b̄p̄b).

(26)

This proves that the conjugacy classes of 2A5 in table 1 play an essential role, and moreover
(r̄, p̄) belongs to the same conjugacy class of (p, r). Regarding the group elements (p, r)∗

the following relations are useful:

(a, b)(p, r)∗(a, b)−1 = (apb, arb)∗

(a, b)∗(p, r)∗(a, b)∗
−1 = (ar̄b, ap̄b)∗.

(27)

We note that p and p̄ belong to the same conjugacy class of 2A5. We give the list of the classes
in table 3 according to the orders of elements and including the total number of elements.

The class structures of the group elements (p, r)∗ can be worked out as follows. Denote by
T the pair of elements T = (p, r)∗. Obviously T 2 = (pr̄, p̄r) belongs to the set of elements
of H ′4. Since elements with different orders belong to different conjugacy classes, it is better to
classify the elements with respect to their orders. Let us assume that T 2m = (1, 1) = (−1,−1)
where m is an integer. This leads to the result (pr̄)m = (r̄p)m = ±1 with possible values m =
1, 2, 3, 4, 5, 6, 10. But we note that ((pr̄)m, (r̄p)m) = (1, 1) = ((pr̄)m, (r̄p)m) = (−1,−1).
This implies that one can restrict the values of m to m = 1, 2, 3, 5. We discuss each case
separately.

(i) m = 1

T 2 = I

pr̄ = r̄p = ±1.
(28)

There are two solutions to (28):
3 Coxeter and du Val use different notations for the finite subgroups of O(4).
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Table 3. Classes of the elements of type (p, r).

Class Order Type # of elements

1 1 (1, 1) = (−1,−1) 1
2 2 (−1, 1) = (1,−1) 1
3 10 (12+, 1)⊕ (1, 12+) 24
4 5 (12−, 1)⊕ (1, 12−) 24
5 10 (12′+, 1)⊕ (1, 12′+) 24
6 5 (12′−, 1)⊕ (1, 12′−) 24
7 6 (20+, 1)⊕ (1, 20+) 40
8 3 (20−, 1)⊕ (1, 20−) 40
9 4 (30, 1)⊕ (1, 30) 60

10 5 (12+, 12+) = (12−, 12−) 144
11 10 (12+, 12−) = (12−, 12+) 144
12 5 (12′+, 12′+) = (12′−, 12′−) 144
13 10 (12′+, 12′−) = (12′−, 12′+) 144
14 5 (12+, 12′+)⊕ (12′+, 12+) 288
15 10 (12+, 12′−)⊕ (12′−, 12+) 288
16 15 (12+, 20+)⊕ (20+, 12+) 480
17 30 (12+, 20−)⊕ (20−, 12+) 480
18 15 (12′+, 20+)⊕ (20+, 12′+) 480
19 30 (12′+, 20−)⊕ (20−, 12′+) 480← Coxeter element
20 20 (12+, 30)⊕ (30, 12+) 720
21 20 (12′+, 30)⊕ (30, 12′+) 720
22 3 (20+, 20+) = (20−, 20−) 400
23 6 (20+, 20−) = (20−, 20+) 400
24 12 (20+, 30)⊕ (30, 20+) 1200
25 2 (15+, 15+)⊕ (15+, 15−) 450

Total # of elements 7200

(a) p = r , T = (p, p)∗, T 2 = I . We have only 60 group elements of this type
(60+, 60+) = (60−, 60−)

(b) p = −r , T ′ = (p,−p)∗, T ′2 = I, T ′ = −T and the number of elements is 60
which can be written (60+, 60−). They are obviously not in the same conjugacy class
because Tr T ′ = −Tr T .

(ii) m = 2

T 4 = I (pr̄)2 = (r̄p)2 = ±1. (29)

(pr̄)2 = (r̄p)2 = 1 is already covered in (i). Now we discuss the case
(pr̄)2 = (r̄p)2 = −1 which shows that they are pure quaternions. Let Q with (Q+ ∈ 15+

and Q− ∈ 15−) be pure quaternions and let pr̄ = Q. So for each value of r we have
corresponding elements p = Qr . Possible choices are

p =
{

Q+r+ = Q−r− 15× 60 = 900 elements

Q+r− = Q−r+ 15× 60 = 900 elements.

Since pr̄ and r̄p are in the same conjugacy class of 2A5 p = rQ does not lead to any
other solution. Therefore the T = (p, r)∗ with T 4 = I form a conjugacy class with 1800
elements:

(iii) m = 3

T 6 = I (pr̄)3 = (r̄p)3 = ±1. (30)
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Table 4. Conjugacy classes of the elements (p, r)∗.

Class # Order Type # of elements

26 2 (p, p)∗ 60
27 2 −(p, p)∗ 60
28 4 (Qr, r)∗,Q2 = −1 1800
29 6 (20−r+, r+)

∗ 1200
30 6 −(20−r+, r+)

∗ 1200
31 10 (12+r+, r+)

∗ 7200
32 10 −(12+r+, r+)

∗ 7200
33 10 (12′+r+, r+)

∗ 7200
34 10 −(12′+r+, r+)

∗ 7200

Table 5. Characters of the classes (19) and (26).

Conjugacy classes

Characters (19) (26)

χ4 −σ −2
χ ′4 −τ −2
χ ′′4 −σ 2
χ ′′′4 −τ 2

These are the elements in the class 20−. Symbolically, we write p = 20−r . Here again
we have two distinct cases

T 6 = I p = 20−r+ : 20× 60 = 1200 elements

T ′6 = I p = 20−r− : 20× 60 = 1200 elements

T ′ = (p, r−) = (p, r+) = −T

Tr T ′ = −Tr T .

Therefore we have two conjugacy classes of elements with order 6 whose characters differ
by a (−) sign:

(iv) m = 5
T 10 = I (pr̄)5 = (r̄p)5 = ±1.

When we check table 1 we notice that there are four possibilities: 12+, 12−, 12′+, 12′−.
Similar analysis leads to four more types of classes:

(1) p = 12+r+ = 12−r− with 12× 60 = 720 elements T+ = (p, r)∗

(2) p = 12+r− = 12−r+ with 12× 60 = 720 elements T− = −T+

(3) p = 12′+r+ = 12′−r− with 12× 60 = 720 elements T ′+ = (p, r)∗

(4) p = 12′+r− = 12′−r+ with 12× 60 = 720 elements T ′− = −T ′+.

The conjugacy classes of the elements (p, r)∗ are listed in table 4.

The irreducible representations and their characters of any group can be determined
when the generating relations of the group are given. We do not want to give the whole
character table of H4. The noncrystallographic Coxeter group H4 has the following irreducible
representations:

1, 1′, 4, 4′, 4′′, 4′′′, 6, 6′, 8, 8′, 9, 9′, 9′′, 9′′′, 10, 16, 16′, 16′′, 16′′′,
164, 165, 18, 24, 24′, 24′′, 24′′′, 25, 25′, 30, 30′, 36, 36′, 40, 48.



Noncrystallographic Coxeter group H4 in E8 11211

Table 6. The Characters of the irreducible representations 4 and 4′ of H4.

Order 1 2 2 3 3 4 5 5 5

Elements 1 1 450 40 400 60 24 24 144
Class (1, 1) (1,−1) (Q,Q) (20−, 1) (20, 20) (30, 1) (12′−, 1) (12−, 1) (12′+, 12′+)
χ4 4 −4 0 −2 1 0 −2σ −2τ σ 2

χ4′ 4 −4 0 −2 1 0 −2τ −2σ σ 2

Order 5 5 6 6 10 10 10 10

Elements 144 288 40 400 24 24 144 144
Class (12+, 12+) (12+, 12′+) (20+, 1) (20+, 20−) (12′+, 1) (12+, 1) (12′+, 12′−) (12+, 12−)
χ4 τ 2 −1 2 −1 2σ 2τ −σ 2 −τ 2

χ4′ τ 2 −1 2 −1 2τ 2σ −τ 2 −σ 2

Order 10 12 15 15 20 20 30 30

Elements 288 1200 480 480 720 720 480 480
Class (12+, 12′−) (20+, 30) (12′+, 20+) (12+, 20+) (12′+, 30) (12+, 30) (12′+, 20−) (12+, 20−)
χ4 1 0 σ τ 0 0 −σ −τ

χ4′ 1 0 τ σ 0 0 −τ −σ

Order 2 2 4 6 6 10 10 10 10

Elements 60 60 1800 1200 1200 7200 7200 7200 7200
Class (p, p)∗ −(p, p)∗ (Qr, r) (20+r+, r+) (20−r−, r+) (12′+r−, r+) (12′+r+, r+) (12+r−, r+) (12+r+, r+)

χ4 −2 2 0 1 −1 σ −σ τ −τ

χ4′ −2 2 0 1 −1 τ −τ σ −σ

There does not exist any standard notation in the literature to distinguish the irreducible
representations of the same dimensionality. Our concern here of course is the branching
of the eight-dimensional representation of W(E8) in terms of the irreducible representations
of H4. As we have already discussed 8 = 4 + 4′. To distinguish these four four-dimensional
representations we picked up two characteristic conjugacy classes: the Coxeter element
class # (19) and (p, p)∗ of class # (26). Their character values distinguish these four
irreducible representations. In fact there is a simple relation between the characters of 4
and 4′ : χ ′4 = χ4(σ → τ). The characters of these two irreducible representations are given
in table 6.

7. Concluding remarks

The noncrystallographic symmetries with five-fold symmetry in two, three and four
dimensions are best described by icosians (when embedding them in crystallographic groups
W(A4),W(D6) and W(E8) in respective four-, six- and eight-dimensional spaces). By using
the reflection generators of W(E8) we have transformed the generators of H4 into block-
diagonal form. We have constructed the Coxeter element of W(E8) as well as of H4 and have
shown that the characteristic polynomial of the Coxeter element of W(E8) can be written as
the product of two polynomials, one corresponding to the characteristic polynomial of the
Coxeter element of H4. By using icosians we have partitioned H4 into its conjugacy classes
and determined the characters of two four-dimensional irreducible representations of H4.

It is obvious that the noncrystallographic H3 and its embedding into the crystallographic
group W(D6) in six-dimensional space are very useful for the quasicrystals of icosahedral
symmetry. We are optimistic that the embedding of H4 in E8 will also shed light on the studies
of the heterotic string theory.
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Appendix

W(E8) generators in the basis of ea, σea(a = 0, 1, 2, 3)

r1 =




1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




r ′1 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




r2 = 1
2




2 0 0 0 0 0 0 0
0 1 −1 0 0 1 0 −1
0 −1 1 0 0 1 0 −1
0 0 0 2 0 0 0 0
0 0 0 0 2 0 0 0
0 1 1 0 0 1 0 1
0 0 0 0 0 0 2 0
0 −1 −1 0 0 1 0 1




r ′2 = 1
2




2 0 0 0 0 0 0 0
0 1 0 1 0 0 1 1
0 0 2 0 0 0 0 0
0 1 0 1 0 0 −1 −1
0 0 0 0 2 0 0 0
0 0 0 0 0 2 0 0
0 1 0 −1 0 0 1 −1
0 1 0 −1 0 0 −1 1




r3 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1




r ′3 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 1




r4 = 1
2




2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 1 −1 −1 0 0 1
0 0 −1 1 −1 0 0 1
0 0 −1 −1 1 0 0 1
0 0 0 0 0 2 0 0
0 0 0 0 0 0 2 0
0 0 1 1 1 0 0 1




r ′4 = 1
2




1 0 0 1 −1 0 −1 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
1 0 0 1 1 0 1 0
−1 0 0 1 1 0 −1 0
0 0 0 0 0 2 0 0
−1 0 0 1 −1 0 1 0
0 0 0 0 0 0 0 2




.
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